Reg. No.:		4								on		٠
-----------	--	---	--	--	--	--	--	--	--	----	--	---

Question Paper Code: 52958

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Fifth Semester

Electrical and Electronics Engineering

EE 6503 — POWER ELECTRONICS

(Common to Electronics and Instrumentation Engineering, Instrumentation and Control Engineering, Mechatronics Engineering)

(Regulation 2013)

(Also common to PTEE 6503 – Power Electronics for B.E. Part-Time – Fourth semester – Electrical and Electronics Engineering – Regulation 2014)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is meant by commutation of SCR and list its types?
- 2. What are the advantages of GTO over SCR?
- 3. Classify the different types of controlled Rectifier.
- 4. What is the function of freewheeling diode and state its advantages.
- 5. What is the effect of load inductance on the load current waveforms in the case of DC chopper?
- 6. What is the disadvantage of frequency modulated chopper?
- 7. Compare CSI and VSI.
- 8. Give the use of resonant switching in power electronic circuits.
- 9. What is integral cycle control?
- 10. What are the different control techniques for AC regulator?

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Explain the static and switching characteristics of IGBT and MOSFET. (13)

Or

- (b) Explain why triac is rarely used in I quadrant with negative pulse and in III quadrant with positive pulse. (13)
- 12. (a) Explain the operating principle of a single phase full controlled bridge converter.

Or

- (b) Explain the operating principle of three phase dual converter with necessary waveforms.
- 13. (a) Derive the expression for voltage gain in a dc dc boost converter and explain the modes of operation with relevant waveforms.

Or

- (b) Explain the working principle of voltage commutated chopper showing the current and voltage waveform across each device.
- 14. (a) Explain the operation of 3 phase bridge inverter for 120 degree mode of operation with phase and line voltage waveforms.

Or

- (b) State different methods of voltage control in inverters. Describe about PWM control in inverter.
- 15. (a) Explain the working of three phase to single phase cycloconverter with neat circuit diagram and necessary waveforms.

Or

- (b) (i) Write a short notes on matrix converter.
 - (ii) Explain the operation of single phase full wave A.C voltage regulator with help of voltage and current waveform.

PART C — $(1 \times 15 = 15 \text{ marks})$

- 16. (a) A single-phase, half-wave rectifier with an AC voltage of 150 V has a pure resistive load of 9Ω . The firing angle α of the thyristor is $\frac{\pi}{2}$. Determine the
 - (i) Rectification efficiency
 - (ii) Form factor
 - (iii) Transformer derating factor
 - (iv) Peak inverse voltage of the SCR
 - (v) Ripple factor of the output voltage.Assume that the transformer ratio is 2: 1.

Or

(b) The series resonance turn-off circuit of Fig.16.b has the following data: E = 160 V, L = 8 MH, resistance of inductor coil r_L = 0.2 Ω , R_{ld} = 0.6 Ω and C = 65 μF .

Determine:

- (i) Derive an expression for the current i(t).
- (ii) The pulse width and
- (iii) The time required for the capacitor voltage to attain a voltage equal to 1.7 E.

Fig.16.b

- sindige --